Để phương trình có hai nghiệm phân biệt trái dấu thì \(1\cdot\left[-\left(m-2\right)\right]< 0\)
=>(m-2)>0
=>m>2
Để phương trình có hai nghiệm phân biệt trái dấu thì \(1\cdot\left[-\left(m-2\right)\right]< 0\)
=>(m-2)>0
=>m>2
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
X^2-2(m-1)x+m+1=0
A; tìm m để pt có 2 nghiệm trái dấu
B: tìm m để pt có hai nghiệm dương phân biệt
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1, \(x^2-8x+2m+6=0\)
Tìm m để pt có 2 nghiệm.
2, \(x^2-2\left(m-1\right)x+2m-6=0\)
tìm m để pt có 2 nghiệm phân biệt
CHO PT :X2 -MX +2M -3 =0
A,GIẢI PT VS M=-5
B, TÌM M ĐỂ PT CÓ NGHIỆM KÉP
C, TÌM M ĐỂ PT CÓ 2 NGHIỆM TRÁI DẤU
D, TÌM HỆ THỨC GIỮA 2 NGHIỆM CỦA PT KO PHỤ THUỘC VÀO M
E, TÌM M ĐỂ PT CÓ 2 NGHIỆM PHÂN BIỆT
Cho pt: x²-2(m-1)x+2m-5 a, chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m b, Tìm m để pt có 2 nghiệm cùng dấu . Khi đó 2 nghiệm mang dấu gì
Cho PT: -x2 + (m-1)x + m2 - 5m + 6 = 0
a) Cmr: PT luôn có 2 nghiệm phân biệt với mọi m.
b) Tìm giá trị của m để PT có 2 nghiệm trái dấu.
cho pt : \(x^2-2\left(m+1\right)x+2m+10=0\)
a) Giải và biện luận về số nghiệm của pt
b) Trong trường hợp pt có 2 nghiệm phân biệt là x1; x2; hãy tìm 1 hệ thức liên hệ giữa x1; x2 mà ko phụ thuộc vào m
c) Tìm giá trị của m để \(P=10x_1x_2+x_1^2+x_2^2\)đạt GTNN
d) Xác định m để pt có 2 nghiệm phân biệt âm
e) Xác định m để PT có 2 nghiệm trái dấu
cho pt bậc 2 `(m+2)x^2- 2(m+1)x +m -4 =0` để phương trình có hai nghiệm phân biệt thoả mãn trái dấu , cùng dấu , cùng âm
cho pt \(x^{2}\)-(m+3)\(x\)+2m+2=0
tìm m đê pt có 2 nghiệm phân biệt \(x_1\);\(x_2\) sao cho \(x^{2}_1\)+\(x^{2}_2\)=13