a.
- Với \(m=-1\Rightarrow x=\dfrac{6}{7}\) (ktm)
- Với \(m\ne-1\)
\(\Delta=\left(8m+1\right)^2-24m\left(m+1\right)=40m^2-8m+1>0;\forall m\) \(\Rightarrow\) pt luôn có 2 nghiệm pb
Để pt có 2 nghiệm thỏa mãn: \(x_1< x_2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_1\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6m}{m+1}-\dfrac{8m+1}{m+1}+1\ge0\\\dfrac{8m+1}{m+1}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m}{m+1}\ge0\\\dfrac{6m-1}{m+1}< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1< m\le0\\-1< m< \dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)
\(\Rightarrow\) Pt có nghiệm thuộc khoảng đã cho khi: \(\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
b.
Đặt \(f\left(x\right)=\left(m+1\right)x^2-\left(8m+1\right)x+6m\)
Pt đã cho có đúng 1 nghiệm thuộc (0;1) khi:
\(f\left(0\right).f\left(1\right)< 0\)
\(\Leftrightarrow6m\left(m+1-8m-1+6m\right)< 0\)
\(\Leftrightarrow-6m^2< 0\)
\(\Leftrightarrow m\ne0\)