Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na Na

Tìm m để 2 pt sau có nghiệm chung:

x^2 - 2mx - 4m + 1 = 0 (1)

x^2 + (3m+1)x + 2m + 1 = 0 (2)

Trần Tuấn Hoàng
30 tháng 4 2023 lúc 22:15

\(x^2-2mx-4m+1=0\left(1\right)\)

\(x^2+\left(3m+1\right)x+2m+1=0\left(2\right)\)

Gọi x0 là nghiệm chung của hai phương trình trên. Do đó ta có:

\(\left\{{}\begin{matrix}x_0^2-2mx_0-4m+1=0\left(3\right)\\x_0^2+\left(3m+1\right)x_0+2m+1=0\end{matrix}\right.\)

\(\Rightarrow\left(3m+1\right)x_0+2m+1-\left(-2mx_0-4m+1\right)=0\)

\(\Rightarrow\left(5m+1\right)x_0+6m=0\)

\(\Rightarrow m\left(5x_0+6\right)+x_0=0\)

\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}\) \(\left(x_0\ne\dfrac{-6}{5}\right)\)

Thay vào (3) ta được:

\(x_0^2-2.\dfrac{-x_0}{5x_0+6}.x_0-4.\dfrac{-x_0}{5x_0+6}+1=0\)

\(\Rightarrow x_0^2+\dfrac{2x_0^2}{5x_0+6}+\dfrac{4x_0}{5x_0+6}+1=0\)

\(\Leftrightarrow x_0^2\left(5x_0+6\right)+2x_0^2+4x_0+5x_0+6=0\)

\(\Leftrightarrow5x_0^3+8x_0^2+9x_0+6=0\)

\(\Leftrightarrow5x_0^3+5x_0^2+3x_0^2+3x_0+6x_0+6=0\)

\(\Leftrightarrow5x_0^2\left(x_0+1\right)+3x_0\left(x_0+1\right)+6\left(x_0+1\right)=0\)

\(\Leftrightarrow\left(x_0+1\right)\left(5x_0^2+3x_0+6\right)=0\)

\(\Leftrightarrow x_0=-1\)

\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}=\dfrac{-\left(-1\right)}{5.\left(-1\right)+6}=\dfrac{1}{6}\)

Nguyễn Huy Tú
30 tháng 4 2023 lúc 21:42

Xét (1) : Để pt có nghiệm khi 

\(\Delta'=m^2-\left(-4m+1\right)=m^2+4m-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge-2+\sqrt{5}\end{matrix}\right.\)

(2) : Để pt có nghiệm khi \(\Delta=\left(3m+1\right)^2-4\left(2m+1\right)=9m^2+6m+1-8m-4=9m^2-2m-3\ge0\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{1-2\sqrt{7}}{9}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)

Để 2 pt có nghiệm chung khi \(\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)


Các câu hỏi tương tự
Mymy V
Xem chi tiết
Allan Phương Anh
Xem chi tiết
Su Su
Xem chi tiết
Văn Như Ngọc
Xem chi tiết
Kunzy Nguyễn
Xem chi tiết
lethienduc
Xem chi tiết
Giang Thị Thanh Vân
Xem chi tiết
Nott mee
Xem chi tiết
sunny
Xem chi tiết