Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho hàm số f(x) biết f(0) = 1 và f x = 4 x 2 + 4 x + 3 2 x + 1 . Biết nguyên hàm của f(x) có dạng
F x = a x 2 + b x + ln 2 x + 1 + c . Tính tỉ lệ a : b : c
A. a : b : c = 1 : 2 : 1
B. a : b : c = 1 : 1 : 1
C. a : b : c = 2 : 2 : 1
D. a : b : c = 1 : 2 : 2
Biết hàm số F ( x ) = a x 3 + ( a + b ) x 2 + ( 2 a - b + c ) x + 1 là một nguyên hàm của hàm số f ( x ) = 3 x 2 + 6 x + 2 . Tổng a+b+c là:
A. 5
B. 4
C. 3
D. 2
Cho hàm số f (x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Biết ∫ 1 2 ( x 2 + 1 ) f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27 2
B. 1 6
C. 7 6
D. - 3 2
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Cho hàm số y = f ( x ) liên tục trên ℝ \ − 1 ; 0 thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ ℝ \ − 1 ; 0 . Biết f ( 2 ) = a + b ln 3 , với a, b là hai số hữu tỉ. Tính T = a 2 − b
A. T = − 3 16 .
B. T = 21 16 .
C. T = 3 2 .
D. T = 0
Cho hàm số f (x) liên tục và có đạo hàm trên 1 2 ; 1 thỏa mãn f ' (x) = 1 x x - 2 . Biết f(1) = 1, f( = ln 1 a ln 3 + b , ( a , b ∈ ). Tổng a + b bằng
A. 2
B. 3
C. - 2
D. - 3
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) thỏa mãn f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Cho ∫ 1 2 ( x 2 + 1 ) 2 f ( x ) d x =a ln3+b ln2+c, với a,b,c là các số hữu tỷ. Giá trị biểu thức a+b+c bằng
A. 27 20
B. 23 20
C. - 27 20
D. - 23 20
Cho số phức z = a + b i ( a , b ∈ R ; a ≥ 0 , b ≥ 0 ) . Đặt đa thức f ( x ) = a x 2 + b x - 2 . Biết f ( - 1 ) ≤ 0 , f ( 1 / 4 ) ≤ - 5 4 . Tìm giá trị lớn nhất của |z|
A. max|z|=2 6
B.max|z|=3 2
C.max|z|=5
D. max|z|=2 5