Cho hàm số f ( x ) liên tục trên ℝ và f ( x ) ≠ 0 với mọi x ∈ ℝ thỏa mãn f ' ( x ) = ( 2 x + 1 ) . f 2 ( x ) v à f ( 1 ) = - 0 , 5 . Biết tổng f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 2017 ) = a b ; ( a ∈ ℝ ; b ∈ ℝ ) v ớ i a b tối giản. Mệnh đề nào dưới đây đúng?
A. b - a = 4035
B. a + b = - 1
C. a b < - 1
D. a ∈ - 2017 ; 2017
Cho hàm số f(x) xác định trên ℝ \ 0 , thỏa mãn f ' x = 1 x 3 + x 5 , f 1 = a và f(-2) = b. Tính f - 1 + f 2
A.f(-1) + f(2) = -a - b
B. f(-1) + f(2) = a - b
C. f(-1) + f(2) = a + b
D. f(-1) + f(2) = b - a
Cho hàm số y = f(x) liên tục trên ℝ, f(x) >0 ∀ x ∈ ℝ thỏa mãn ln f x + f x - 1 = ln x 2 + 1 e x 2 .Tính I = ∫ 0 1 x f x d x
A. I =-12
B. I =8
C.I =12
D. I =3/4
Cho hàm số f(x) liên tục trên ℝ + thỏa mãn f ' x ≥ x + 1 x , ∀ x ∈ ℝ + và f(1) = 1. Tính giá trị nhỏ nhất của f(2).
A. 3
B. 2
C. 5 2 + ln 2
D. 4
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Cho hàm số y=f(x) liên tục trên ℝ \ 0 ; − 1 biết rằng hàm số thỏa mãn điều kiện f 1 = − 2 ln 2 , x x + 1 f ' x + f x = x 2 + x . Giá trị f 2 = a + b ln 3 a , b ∈ ℚ . Tính giá trị a 2 + b 2 ?
A. 25 4
B. 9 2
C. 5 2
D. 13 4
Cho hàm số f(x) xác định trên ℝ \ − 1 ; 1 và thỏa mãn f ' x = 1 x 2 − 1 . Biết f − 3 + f 3 = 0 và f − 1 2 + f 1 2 = 2. Tính T = f − 2 + f 0 + f 5
A. 1 2 ln 2 − 1
B. ln 2 + 1
C. 1 2 ln 2 + 1
D. ln 2 − 1