Tìm tất cả các hàm \(f:R\rightarrow R\)thõa
\(f\left(x\right)+f\left(y\right)=f\left(x+y\right)-xy-1\)và \(f\left(1\right)=1\)
Tìm tất cả hàm số \(f:R^+\rightarrow R^+\) thoả mãn:
\(f\left(x^2+y^2\right)=f\left(xy\right),\forall x,y\in R^+\)
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
Xác định hàm số f(x) biết:
\(f\left(\frac{3x+1}{x+2}\right)=\frac{x+1}{x-1}\left(x\ne1\right)\)
cho hàm số \(f\left(x\right)=x^4-\left(m^2-3x+2\right)x^3+2x^2-\left(m-1\right)x+1\)
tìm m để hàm số chẵn
Tìm giá trị nhỏ nhất của hàm số sau : \(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2},x\in\left[0;\sqrt{3}\right]\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Giúp với ạ.
Tìm tất cả hàm số \(f:R\backslash\left\{0,1\right\}\rightarrow R\) thoả mãn
\(f\left(\dfrac{1}{1-x}\right)+f\left(\dfrac{x-1}{x}\right)=x+1-\dfrac{1}{x}\) , \(\forall x\in R\backslash\left\{0,1\right\}\)
Xác định hàm số f(x) biết:
\(f\left(\frac{x-1}{x}\right)+2\cdot f\left(\frac{1}{x}\right)=x\left(x\ne0,1\right)\)