a)\(A=\sqrt{25}-\sqrt{x^2-4x+4}\)
\(=5-\sqrt{\left(x-2\right)^2}\)
Thấy: \(\sqrt{\left(x-2\right)^2}\ge0\)\(\Rightarrow-\sqrt{\left(x-2\right)^2}\le0\)
\(\Rightarrow A=5-\sqrt{\left(x-2\right)^2}\le5\)
Khi \(x=2\)
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(B=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-5\right|+\left|x-6\right|\)\(=\left|x-5\right|+\left|6-x\right|\)
\(\ge\left|x-5+6-x\right|=1\)
Khi \(5\le x\le6\)