tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
1. TÌm GTNN:
a, M=\(\frac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\frac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\frac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\frac{4x^3}{x^2+1}\)
c, C=\(\frac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\frac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
Cho biểu thức: \(A=\left[\frac{4}{\left(x+2\right)^3}\left(\frac{2}{x}+1\right)+\frac{1}{x^2+4x+4}\left(\frac{4}{x^2}+1\right)\right]:\frac{x^2+1}{x^3-x^2}\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
c) Tìm giá trị nguyên của x để A nguyên
1) giải phương trình :
\(\left|x^2-x+2\right|-3x-7=0\)
2) Tìm x \(\varepsilonℤ\)để A \(\varepsilonℤ\)biết A= \(\left(\frac{1}{2x-1}+\frac{3}{1-4x^2}-\frac{2}{2x+1}\right):\frac{x^2}{2x^2+x}\)
3) Cho 3 số a,b,c thỏa : \(a^2+b^2+c^2=\frac{\left(a+b+c\right)^2}{3}\)
Tìm gtnn của B= \(a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
4) Cho phương trình \(\left(2x-3\right)^2=5\).Tính giá trị của A= \(\frac{3x^2}{x^4-9x^2+1}\)
cho B = \(\frac{4}{x^2-2x+1}-\left(\frac{x}{x^2-1}-\frac{1}{x^3-x}\right):\frac{x^2-2x+1}{x^3+x}\)
a) Tìm ĐKXĐ và rút gọn B
b) tính giá trị B khi /x-1/ = 2
c) tìm x để B = -1
d) so sánh B với -2
e) GTNN của B
Cho biểu thức: \(P=\left(\frac{x+1}{x-1}-\frac{4x^2}{1-x^2}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-2x+1}{4x^2-4}\)
a) Rút gọn P
b) Tính P khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\)
c) Tìm x nguyên để P có giá trị nguyên
d) Tìm x để P > 1
e) Tìm m để x thỏa mãn P = m - 1
\(A,\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x^2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right):\frac{2x+y}{x^2+2xy+y^2}\right]\cdot\frac{x-y}{3}=xy\)
Chứng minh đẳng thức ( tìm x)
mọi người giải dùm mình cảm ơn