Lời giải:
$x^2+2y^2-2xy+10x-16y+20$
$=(x^2-2xy+y^2)+y^2+10x-16y+20$
$=(x-y)^2+10(x-y)+y^2-6y+20$
$=(x-y)^2+10(x-y)+25+(y^2-6y+9)-14$
$=(x-y+5)^2+(y-3)^2-14$
$\geq -14$
Vậy biểu thức có min $=-14$
Giá trị này đạt tại $x-y+5=y-3=0$
$\Leftrightarrow (x,y)=(-2,3)$