Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Phạm

Tìm GTNN của các biểu thức:

2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\) 

4) D = \(\dfrac{3x^2+3}{3x^2+7}\)

Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 20:26

2: (3x-4)^2+2>=2

=>5/(3x-4)^2+2<=5/2

=>B>=-5/2

Dấu = xảy ra khi x=4/3

4: D=(3x^2+7-4)/(3x^2+7)=1-4/3x^2+7

3x^2+7>=7

=>4/3x^2+7<=4/7

=>-4/3x^2+7>=-4/7

=>D>=3/7

Dấu = xảy ra khi x=0

2) B = \(\dfrac{-5}{\left(3x-4\right)^2+2}\) 

Ta có: ( 3x-4)2 \(\ge\) 0 , \(\forall\) x

=> ( 3x-4)+2 \(\ge\) 2, \(\forall\) x

=> \(\dfrac{1}{\left(3x-4\right)^2+2}\) \(\le\) \(\dfrac{1}{2}\) , \(\forall\) x

=> \(\dfrac{-5}{\left(3x-4\right)^2+2}\) \(\ge\) \(\dfrac{-5}{2}\) , \(\forall\) x

=> B \(\ge\) \(\dfrac{-5}{2}\) 

Vậy B đạt GTNN khi bằng \(\dfrac{-5}{2}\) 

Dấu "= " xảy ra khi 3x - 4 = 0

4) D=\(\dfrac{3x^2+3}{3x^2+7}\) 

= 1 - \(\dfrac{4}{3x^2+7}\) 

Ta có: 3x2 \(\ge\) 0, \(\forall\) x

=> 3x2 +7 \(\ge\) 7, \(\forall\) x

=> \(\dfrac{1}{3x^2+7}\) \(\le\) \(\dfrac{1}{7}\) 

=> \(\dfrac{4}{3x^2+7}\) \(\le\) \(\dfrac{4}{7}\) 

=> 1 - \(\dfrac{4}{3x^2+7}\) \(\ge\) \(\dfrac{3}{7}\) 

Vậy D đạt GTNN khi bằng \(\dfrac{3}{7}\) 

Dấu "=" xảy ra khi x = 0


Các câu hỏi tương tự
edogawa conan
Xem chi tiết
Nguyễn Dương Thùy Linh
Xem chi tiết
ĐOÀN THỊ MINH HIỀN
Xem chi tiết
Princess Star
Xem chi tiết
nguyen thi le thanh
Xem chi tiết
Dung Phùng
Xem chi tiết
ANH HOÀNG
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Carina Marian
Xem chi tiết