\(A=\left(x^4-3x^3+2x^2\right)-3\left(x^3-3x^2+2x\right)+2\left(x^2-3x+2\right)+2019\)
\(=x^2\left(x^2-3x+2\right)-3x\left(x^2-3x+2\right)+2\left(x^2-3x+2\right)+2019\)
\(=\left(x^2-3x+2\right)\left(x^2-3x+2\right)+2019\)
\(=\left(x^2-3x+2\right)^2+2019\ge2019\)
\(A_{min}=2019\) khi \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)