\(A=\left(x-4\right)\left(x+3\right)\)
\(=x^2-x-12\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{49}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(A=\left(x-4\right)\left(x+3\right)\)
\(=x^2-x-12\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{49}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{49}{4}\ge-\dfrac{49}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Cho biểu thức A\(=\frac{x^2}{x-3}\cdot\left(\frac{x^2+9}{x}-6\right)-4\)
a,tìm x để P<-6
b,tìm GTNN của A
Tìm GTNN Của x^2+3/x+1
Tìm GTNN của biểu thức A=13*x2+y2+4*x*y-2*y-16*x+2015
cho x+y=1 tìm gtnn của M=x4+y4
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
tìm gtnn của bt : A= \(\frac{4x+3}{x^2+1}\)
Cho hai số thực x và y thỏa mãn y-x=1 tìm gtnn của A=x^2+y^2
Cho x^2+y^2=2. Tìm GTLN và GTNN của bt A=x+y
Cho x+y+z=3. Tìm GTNN của x2+y2+z2.