Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thuy Tran

Tìm GTNN của :

A = x2 - 4x + 15

B = x.(x - 3x)

C = x2 + y2 +4x + 6y +20

Phạm Tuấn Đạt
27 tháng 7 2018 lúc 21:54

a)\(A=x^2-4x+15\)

\(A=x^2-2x-2x+4+9\)

\(A=x\left(x-2\right)-2\left(x-2\right)+9\)

\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)

Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)

Vậy Min A = 9 <=> x = 2

b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)

Dấu "=" xảy ra khi \(x=0\)

Vậy Min B = 0 <=> x = 0

c)\(C=x^2+y^2+4x+6y+20\)

\(C=x^2+4x+4+y^2+6y+9+7\)

\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra khi : x = -2 ; y = -3

Vậy Min C = 7 <=> x = -2 ; y = -3

Dương Lam Hàng
27 tháng 7 2018 lúc 21:55

\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)

Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2

\(C=x^2+y^2+4x+6y+20\)

     \(=x^2+4x+4+y^2+6y+9+7\)

      \(=\left(x+2\right)^2+\left(x+3\right)^2+7\)

Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3

Dương Lam Hàng
27 tháng 7 2018 lúc 21:57

Mình làm thiếu câu b

\(B=x.\left(x-3x\right)=x.\left(-2x\right)=-2x^2\)

Vì \(x^2\ge0\left(\forall x\right)\Rightarrow-2x^2\ge0\)

Dấu "=" xảy ra <=> x2 = 0<=> x = 0

Vậy GTNN của biểu thức bằng 0 khi và chỉ khi x = 0


Các câu hỏi tương tự
_lynnz._
Xem chi tiết
dũng nguyễn đăng
Xem chi tiết
Đoàn Quang Thái
Xem chi tiết
Pham Trong Bach
Xem chi tiết
quam
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Châu Anh Đỗ
Xem chi tiết
Ngo Tung Lam
Xem chi tiết
Trần Tiên Phong
Xem chi tiết