\(A=\dfrac{y^2}{9x^2-12xy+5y^2}\left(x\ne0\right)\)
\(=\dfrac{y^2}{\left(3x\right)^2-12xy+4y^2+y^2}=\dfrac{y^2}{\left(3x-2y\right)^2+y^2}\)
Ta có : y2 ≥ 0 ∀ y
\(\left(3x-2y\right)^2\ge0\)
\(\Rightarrow A\ge0\forall y\) , \(x\ne0\)
=> GTNN của A = 0
\(\dfrac{Y^2}{9x^2-12xy+5y^2}=\dfrac{1}{\dfrac{9x^2}{y^2}-\dfrac{12x}{y}+5}taco:\dfrac{9x^2}{y^2}-\dfrac{12x}{y}+5\)
\(=\left(\dfrac{3x}{y}-2\right)^2+1\le1\)
\(\Rightarrow\dfrac{1}{\dfrac{9x^2}{y^2}-\dfrac{12x}{y}+5}\ge1\)
\(\Rightarrow A\min\limits=1khi\dfrac{3x}{y}=2\)