Đặt T là biểu thức cần tìm
Ta có:
\(\Leftrightarrow Tx^2+Tx+T-x-1=0\)
\(\Leftrightarrow Tx^2+x\left(T-1\right)+T-1=0\)
TH1: T = 1 => x= 0
TH2: \(T\ne0\)
delta \(\ge0\Leftrightarrow\left(T-1\right)^2-4.T.\left(T-1\right)\ge0\)
\(\Leftrightarrow T^2-2T+1-4T^2+4T\Leftrightarrow-3T^2+2T+1\ge0\Leftrightarrow-\dfrac{1}{3}\le T\le1\)
\(T_{min}=-\dfrac{1}{3}\Rightarrow\) thế vào ra x
\(T_{max}=1\Rightarrow\) thế vào ra x
*) Tìm Max \(P=\dfrac{x+1}{x^2+x+1}=\dfrac{x^2+x+1-x^2}{x^2+x+1}=1-\dfrac{x^2}{x^2+x+1}\le1\)
"=" xảy ra <=> x = 0