Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trường Giang

tìm GTLN hoặc NN

\(H=X^2+\left(X-2\right)\left(3X-1\right)\)

 ๖ۣۜFunny-Ngốkツ
20 tháng 8 2018 lúc 16:14

\(H=x^2+\left(x-2\right)\left(3x-1\right)\)

\(=x^2+3x^2-x-6x+2\)

\(=4x^2-7x+2\)

\(=\left(2x\right)^2-2\cdot2\cdot\frac{7}{4}x+\left(\frac{7}{4}\right)^2-\frac{17}{16}\)

\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge-\frac{17}{16}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-\frac{7}{4}\right)^2=0\)

\(\Leftrightarrow x=\frac{7}{8}\)

Vậy \(H_{min}=-\frac{17}{16}\)tại \(x=\frac{7}{8}\)

Lê Ng Hải Anh
20 tháng 8 2018 lúc 16:16

\(x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)

\(=4x^2-7x+\frac{49}{16}-\frac{17}{16}\)

\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)

Vì: \(\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{17}{16}\forall x\)

=> Min H =17/16 tại \(\left(2x-\frac{7}{4}\right)^2=0\Rightarrow x=\frac{7}{8}\)

=.= hok tốt!!

Dương Lam Hàng
20 tháng 8 2018 lúc 16:21

\(H=x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)

                               \(=4x^2-2.2x.\frac{7}{4}+\frac{49}{16}-\frac{17}{16}=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{-17}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{7}{4}=0\Leftrightarrow x=\frac{7}{8}\)

Vậy HMin = -17/16 khi và chỉ khi x = 7/8


Các câu hỏi tương tự
Meaia
Xem chi tiết
Vũ Thị Thảo
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Yakata Yosi Mina
Xem chi tiết
Xấu Không Cần Hư Cấu
Xem chi tiết
Nguyễn Trường Giang
Xem chi tiết
Nguyễn Đức Hoàn
Xem chi tiết
nguyenthitulinh
Xem chi tiết
Nguyễn Trường Giang
Xem chi tiết