\(H=x^2+\left(x-2\right)\left(3x-1\right)\)
\(=x^2+3x^2-x-6x+2\)
\(=4x^2-7x+2\)
\(=\left(2x\right)^2-2\cdot2\cdot\frac{7}{4}x+\left(\frac{7}{4}\right)^2-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge-\frac{17}{16}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-\frac{7}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{7}{8}\)
Vậy \(H_{min}=-\frac{17}{16}\)tại \(x=\frac{7}{8}\)
\(x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)
\(=4x^2-7x+\frac{49}{16}-\frac{17}{16}\)
\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)
Vì: \(\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{17}{16}\forall x\)
=> Min H =17/16 tại \(\left(2x-\frac{7}{4}\right)^2=0\Rightarrow x=\frac{7}{8}\)
=.= hok tốt!!
\(H=x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)
\(=4x^2-2.2x.\frac{7}{4}+\frac{49}{16}-\frac{17}{16}=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{-17}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{7}{4}=0\Leftrightarrow x=\frac{7}{8}\)
Vậy HMin = -17/16 khi và chỉ khi x = 7/8