GTNN và GTLN của cả A và B hay của A + B vậy bạn...
GTNN và GTLN của cả A và B hay của A + B vậy bạn...
tìm GTNN và GTLN của hs y=\(\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
1) CMR : \(2^{1975}+5^{2010}⋮3\)
2) CMR nếu \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1\) thì \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
3) cho a,b,c dương . CM \(\sqrt{\dfrac{2}{a}}+\sqrt{\dfrac{2}{b}}+\sqrt{\dfrac{2}{c}}\le\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{c+a}{ca}}\)
p/s : đề GIa lai nhé mik hỏi cách làm khác thui, sắp thi tỉnh oy =)
cho biểu thức :
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
a)Nêu điều kiện và rút gọn A
b)tính A khi x=3-\(\sqrt{2}\)
c)tìm x để A=\(\dfrac{1}{2}\)
d)tìm x để A<\(\dfrac{3}{4}\)
e)tìm x nguyên để A nguyên
g)tìm x để A nguyên
h)tìm x để A min. Tìm giá trị của A khi đó
k)tìm số m để pt m.A=\(\sqrt{x}\)-2 có 2 nghiệm
l)tìm m để pt m.A=\(\sqrt{x}\)-2
a/ giải pt: \(\sqrt{3x-2}-\sqrt{x+7}=1\)
b/ giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y-2}=2\\\dfrac{2}{y-2}-\dfrac{3}{x-1}=1\end{matrix}\right.\)
CHO BT: P=\(\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rg p
b) tính gt p biết x = \(\frac{53}{9-2\sqrt{7}}\)
c) tìm gtnn của \(\frac{1}{p}\)
p=\(\left(\frac{1-\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}+2}{x-3\sqrt{x}+2}\right):\left(\frac{2}{\sqrt{x}-2}+\frac{1-\sqrt{x}}{x-2\sqrt{x}}\right)\)
a) rg p
b) tính gt p biết x=\(6-2\sqrt{5}\)
c) tìm GTLN của \(\frac{p}{\sqrt{x}}\)
CHO BT: P=\(\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rg p
b) tính gt p biết x = \(\frac{53}{9-2\sqrt{7}}\)
c) tìm gtnn của \(\frac{1}{p}\)
CHO BT: P=\(\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rg p
b) tính gt p biết x = \(\frac{53}{9-2\sqrt{7}}\)
c) tìm gtnn của \(\frac{1}{p}\)
Cho x , y , z > 0
Chứng minh rằng \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Ai đó giúp tui nhanh nha , thanks you