Tìm GTLN của biểu thức
a) \(A=\dfrac{1}{x-\sqrt{x}+2}\)
b) \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm GTNN hoặc GTLN (nếu có) của:
a) A = \(\sqrt{x^2-2x+5}\)
b) B = 5 - \(\sqrt{x^2-6x+14}\)
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm GTNN của:B=\(\sqrt{4x^4-4x^2\left(x+1\right)+\left(x+1\right)^2+9}\)
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
tìm GTLN của biểu thức:M=\(\left(\frac{2x+3\sqrt{x}}{2x+5\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right):\frac{\sqrt{x}+2}{\sqrt{x}+2018}\)với x lớn hơn hoặc bàng 0
* Tìm GTNN của \(\sqrt{x^2-2x+5}\)
* Tìm GTLN của \(5-\sqrt{x^2-6x+14}\)
Giúp mình với!!! Bài này về bất đẳng thức Cauchy ak!!!
1. Cho x > 1 hãy tìm GTNN của:
P=\(\dfrac{x}{\sqrt{x}-1}\)
2. Tìm GTNN của:
B=\(\dfrac{x+15}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1,x\ne9\right)\)
Tìm GTLN của B=\(\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)