Ta có :
\(D=-x^2-4xy-5y^2+6y+1672\)
\(=-\left(x^2+4xy+4y^2\right)-\left(y^2+6y+9\right)+9+1672\)
\(=-\left(x+2y\right)^2-\left(y+3\right)^2+1681\)
Có :
\(\left(x+2y\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+3\right)^2+1681\le1681\)
\(\Rightarrow Max_N=1681\Leftrightarrow\hept{\begin{cases}y=-3\\x=6\end{cases}}\)
Vậy ...
-(x-2y)^2 -(y-3)^2 +1681
Với mọi x, y ta có: -....<=0
=>-.... <= 1681
Dấu = xảy ra khi
x=2y; y=3
=> x=6;y=3
Vậy...
Trần Thủy Dung làm sai rồi +6y=-(-6y) chứ