\(A=-2x^2+8x-15\)
\(-A=2x^2-8x+15\)
\(-A=2\left(x^2-4x+4\right)+7\)
\(-A=2\left(x-2\right)^2+7\)
Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge7\)
\(\Leftrightarrow A\le-7\)
Dấu "=" xảy ra khi :
\(x-2=0\Leftrightarrow x=2\)
Vậy \(A_{Max}=7\Leftrightarrow x=2\)
\(B=-5x\left(x+2\right)\)
\(B=-5x^2-10x\)
\(-B=5x^2+10x\)
\(-B=5\left(x^2+2x+1\right)-5\)
\(-B=5\left(x+1\right)^2-5\)
Mà \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow5\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-5\)
\(\Leftrightarrow B\le5\)
Dấu "=" xảy ra khi :
\(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=5\Leftrightarrow x=-1\)