\(M=a+\sqrt{a}\)
\(=\left[\left(\sqrt{a}\right)^2+2.\sqrt{a}.\dfrac{1}{2}+\dfrac{1}{4}\right]-\dfrac{1}{4}\)
\(=\left(\sqrt{a}+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=-\dfrac{1}{4}+\left(\sqrt{a}+\dfrac{1}{2}\right)^2\)
Vì \(\left(\sqrt{a}+\dfrac{1}{2}\right)^2\) ≥ 0
⇒ M≤ \(-\dfrac{1}{4}\)
Min M=\(-\dfrac{1}{4}\)
ĐKXĐ: \(a\ge0\)
Khi đó ta có: \(\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ge0\end{matrix}\right.\) \(\Rightarrow a+\sqrt{a}\ge0\)
\(M_{min}=0\) khi \(a=0\)