Ta thấy: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left|2x+y\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x-3\right)^2-\left|2x+y\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left|2x+y\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3=0\\2x+y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\2\cdot3+y=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=-6\end{cases}}\)
Vậy Min=0 khi \(\hept{\begin{cases}x=3\\y=-6\end{cases}}\)