\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\)
Do \(\left(2x+1\right)^2\ge0\) ; \(\forall x\)
\(\Rightarrow A\ge10\)
\(A_{min}=10\) khi \(x=-\dfrac{1}{2}\)
Tương tự như trên:
\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(B=\left(x^2+5x\right)^2-36\ge-36\)
\(B_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)