b) \(A=2x^2-x+2017\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)
\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)
Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)
a) \(A=a^4-2a^3+2a^2-2a+2\)
\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)
\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)
Vậy min A = 1 đạt tại a =1/
Có nhiều kiểu phân tích cho câu a lắm
VD: \(A=\frac{\left(a^2-1\right)^2}{2}+\frac{\left(a-1\right)^4}{2}+1\ge1\)
Như có lẽ phân tích kiểu cô chi là đơn giản nhất
\(A=2x^2-x+2017\)
\(2\left(x^2-2\cdot\frac{1}{4}x+\frac{1}{16}\right)+\frac{16135}{8}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{16135}{8}\ge8\)
Dấu "=" xảy ra tại \(x=\frac{1}{4}\)