a) Đặt \(A=\frac{2}{6x-9x^2-21}\). A đạt giá trị nhỏ nhất khi \(\frac{1}{A}\)đạt giá trị lớn nhất.
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
=> \(MinA=-1\Leftrightarrow x=\frac{1}{3}\)
b) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có ; \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\) \(\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
Min B = -4 khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{cases}}\)