với x,y,z là số thực đôi một khác nhau, hãy tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{2x-y}{x-y}\right)^2+\left(\frac{2y-z}{y-z}\right)^2+\left(\frac{2z-x}{z-x}\right)^2\)
Tìm giá trị của x,y sao cho biểu thức \(P=\frac{2}{3}-\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}.\) đạt giá trị nhỏ nhất
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Tìm giá trị nhỏ nhất của hàm số sau : \(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2},x\in\left[0;\sqrt{3}\right]\)
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Tìm các giá trị của m để biểu thức sau luôn dương
\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)+1-4m^2}{-4x^2+5x-2}\)
3. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\left|4x-3\right|+\left|5y+\frac{15}{2}\right|+\frac{35}{2}.\)
Cho các số thực dương x,y,z thỏa mãn x + y + xyz = z. Tìm giá trị lớn nhất của biểu thức \(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}..\)
g
Tìm giá trị nhỏ nhất của biểu thức :
\(f\left(x\right)=\dfrac{2}{x}+\dfrac{4}{2-x}-1vớix\in\left(0;2\right)\)
Tìm giá trị nhỏ nhất của biểu thức : \(f\left(x,y\right)=\sqrt{\left(x-3\right)^2+\left(y-4\right)^2}+|x|+|y|\)
(Sử dụng kiến thức hình học để chứng minh)