Ta có x 2 - 6 x = x - 3 2 - 9 ≥ - 9 với mọi x.
x 2 - 6 x = - 9 ⇔ x - 3 = 0 ⇔ x = 3 ⇔ x = ± 3 .
Vậy giá trị nhỏ nhất của biểu thức với x ∈ ℝ là - 9 , đạt được khi x = ± 3 .
Ta có x 2 - 6 x = x - 3 2 - 9 ≥ - 9 với mọi x.
x 2 - 6 x = - 9 ⇔ x - 3 = 0 ⇔ x = 3 ⇔ x = ± 3 .
Vậy giá trị nhỏ nhất của biểu thức với x ∈ ℝ là - 9 , đạt được khi x = ± 3 .
Tìm giá trị nhỏ nhất của biểu thức g x = x 2 + 3 x với x ∈ ℝ .
A. - 9 4
B. - 3 2
C. 0
D. 3 2
Tìm giá trị nhỏ nhất của biểu thức f(x) = x + 3/x với x >=2
Giá trị nhỏ nhất của biểu thức x2 + 3x với x ∈ ℝ là:
A. - 3 2
B. - 9 4
C. - 27 4
D. - 81 8
Cho a,b,c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\)với mọi \(x\in R\). Tìm giá trị nhỏ nhất của biểu thức \(F=\frac{4a+c}{b}\)
Cho hàm số \(f\left(x\right)\) là hàm số bậc hai với hệ số \(a>0\), thỏa mãn \(\left|f\left(x\right)\right|\le1,\forall x\in\left[-1;1\right]\) và biểu thức \(P=\dfrac{8}{3}a^2+2b^2\) đạt giá trị lớn nhất. Tính giá trị của biểu thức \(Q=5a+11b+c.\)
F=\(\frac{x}{x^2+2}\)với x>0
TÌm giá trị lớn nhất của biểu thức sau
Tìm giá trị nhỏ nhất của biểu thức :
\(f\left(x\right)=\dfrac{2}{x}+\dfrac{4}{2-x}-1vớix\in\left(0;2\right)\)
Tìm giá trị lớn nhất của x để biểu thức P = |x + 2| + |x - 3| đạt giá trị nhỏ nhất
Cho \(x-y=\sqrt{3}\)
giá trị nhỏ nhất của biểu thức P = |x - 6| + |y + 1| có dạng \(P_{min}=a\sqrt{3}+b.\), trong đó a,b là số nguyên. Tính giá trị của biểu thức
S = a + b