ĐKXĐ: \(x\ge1\)
\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=|1-\sqrt{x-1}|+|\sqrt{x-1}+1|\)
\(\ge|1-\sqrt{x-1}+\sqrt{x-1}+1|=2\)
Vậy GTNN của A là 2 khi \(1\le x\le2.\)
ĐKXĐ: \(x\ge1\)
\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=|1-\sqrt{x-1}|+|\sqrt{x-1}+1|\)
\(\ge|1-\sqrt{x-1}+\sqrt{x-1}+1|=2\)
Vậy GTNN của A là 2 khi \(1\le x\le2.\)
1) cho biểu thức A= \(\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}\) - \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) + \(\dfrac{2.\left(x-1\right)}{\sqrt{x}-1}\) ( x>0; x ≠1)
a) Rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của 4
P = \(\left(\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn P
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
c) Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{1}{P}\)
Tìm giá trị nhỏ nhất của biểu thức :\(P=\sqrt{1-x}+\sqrt{x+1}+2\sqrt{x}\)
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
A = \((\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1})\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Hãy tìm điều kiện xác định và rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của biểu thức A
c) Tính giá trị của A tại x= \(\frac{18\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
cho biểu thức A=\(\dfrac{2x+1}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) và B=\(\dfrac{1+x.\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\)
a, tính giá trị của B khi x = \(4-2.\sqrt{3}\)
b, rút gọn biểu thức P=A.B
c,tính giá trị nhỏ nhất của Q=\(\sqrt{x}+\dfrac{1}{P}\)với (x>1)
Cho hai biểu thức:
P = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{2-\sqrt{x}}{x+2\sqrt{x}}\) với \(x>0\)
Biết biểu thức Q sau khi thu gọn được Q = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Tìm giá trị nhỏ nhất của biểu thức \(A=P:Q\) với điều kiện \(x\ge4\)
a) Rút gọn biểu thức E
b) tìm gt của x để E>1
c) với x > 1 tìm giá trị nhỏ nhất của E
d) tìm x để E = \(\dfrac{9}{2}\)