bn đăng hoài và mk cũng rất chú ý tới bài này nhưng bài này k có GTNN, MONG BN XEM LẠI ĐỀ
\(B=x^2+xy+y^2-3x-3y+2016\)
\(=x^2+xy-3x+y^2-3y+2016\)
\(=x^2+x\left(y-3\right)+y^2-3y+2016\)
\(=x^2+2.x.\frac{y-3}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y-\left(\frac{y-3}{2}\right)^2+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2-6y+9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2}{4}+\frac{3}{2}y-\frac{9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}y^2-\frac{3}{2}y+\frac{8055}{4}\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y^2-2y+1\right)+2013=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2013\ge2013\) (với mọi x,y)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{y-3}{2}=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy minB=2013 khi x=y=1
Bài này tìm đc GTNN nhé
siêu đẳng, đây mới là thần tuong toan hoc cua tui, nghiêng mk bái phục bn, cần phải nick tên thật đi bn
Ta có
2B = 2x2 + 2y2 + 2xy - 6x - 6y + 4032
= (x2 + 2xy + y2) - (4x + 4y) + (x2 - 2x + 1) + (y2 - 2y + 1) + 4 + 4026
= (x + y)2 - 4(x + y) + 4 + (x - 1)2 + (y - 1)2 + 4026
= (x + y -2)2 + (x - 1)2 + (y - 1)2 + 4026\(\ge4026\)
=> B\(\ge2013\)
Đạt được khi x = y = 1