Bài 12: Chia đa thức một biến đã sắp xếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kathy Nguyễn

Tìm giá trị nguyên của n để giá trị của biểu thức \(3n^3+10n^2-5\) chia hết cho giá trị của biểu thức \(3n+1\)

hattori heiji
21 tháng 10 2017 lúc 21:55

3n + 10n -5 3n+1 3 2 n 2 3n + n 3 2 9n -5 2 +3n 9n +3n 2 -3n-5 -1 -3n-1 -4 =>\(\dfrac{3n^3+10n^2-5}{3n+1}=\) \(\left(n^2+3n-1\right)-\dfrac{4}{3n+1}\)

để\(\dfrac{3n^3+10n^2-5}{3n+1}\) nguyên thì -\(\dfrac{4}{3n+1}\) nguyên

=>\(-4⋮\left(3n+1\right)\)

=>(3n+1)\(\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

ta có bảng sau

3n+1 -1 1 -2 2 -4 4
3n -2 0 -3 2 -5 3
n \(\dfrac{-2}{3}\) 0 -1 \(\dfrac{2}{3}\) \(\dfrac{-5}{3}\) 1

mà n \(\in Z\)

=>n\(\in\) {-1;0;1}

vậy ....


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
trang
Xem chi tiết
N cn
Xem chi tiết
Anh Minh
Xem chi tiết
Huỳnh Trần Duy An
Xem chi tiết
Lê Nhật Bảo Trân
Xem chi tiết
Lò thị lim
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Phạm Lê Quỳnh Nga
Xem chi tiết