Ta có :A= \(2n^2-n+2=2n^2+n-2n-1+3\)
= \(n\left(2n+1\right)-\left(2n+1\right)+3=\left(n-1\right)\left(2n+1\right)+3\)
\(A⋮2n+1=>3⋮2n+1\) hay 2n+1 là ước của 3 ( do n nguyên )
\(\begin{matrix}2n+1&-3&-1&1&3\\n&-2&-1&0&1\end{matrix}\)
Vậy n \(\in\left\{-2;-1;0;1\right\}\)