Lời giải:
$B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2+3\geq 3$
$\Rightarrow B=1+\frac{12}{x^2+3}\leq 1+\frac{12}{3}=5$
Vậy $B_{\max}=5$
Giá trị này đạt tại $x^2=0\Leftrightarrow x=0$
Lời giải:
$B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2+3\geq 3$
$\Rightarrow B=1+\frac{12}{x^2+3}\leq 1+\frac{12}{3}=5$
Vậy $B_{\max}=5$
Giá trị này đạt tại $x^2=0\Leftrightarrow x=0$
tìm giá trị lớn nhất của biểu thức sau:B=-x^2-2*x+2
mọi người giúp mik với :
tìm giá trị lớn nhất của biểu thức sau:
B = \(\dfrac{1}{2\left(x-1\right)^2+3}\)
tìm giá trị nhỏ nhất của biểu thức sau:B+|x-6|+X-3
tìm giá trị lớn nhất của biểu thức:
A=(2.x+1/3)^4-1
tìm giá trị nhỏ nhất của biểu thức:
B=-(4/9.x-2?15)^2+3
Tìm giá trị lớn nhất của biểu thức: B=\(\dfrac{x^2+15}{x^2+3}\)
TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC B=x^2+15/x^2+3
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
Tìm giá trị lớn nhất của biểu thức B= (x2+15) /(x2+3)
Tìm x, y để biểu thức M đạt giá trị lớn nhất và tìm giá trị lớn nhất đó M=|15/2*y-3*x|-|4x-10y|-2*(x+1)*(x+1)+2020