`Q=6x-x^2-10`
`Q=-x^2+6x-9-1`
`Q=-(x-3)^2-1`
Vì `-(x-3)^2 <= 0 <=>-(x-3)^2-1 <= -1`
Hay `Q <= -1`
Dấu "`=`" xảy ra `<=>x-3=0<=>x=3`
\(Q=6x-x^2-10\)
\(Q=-\left(x^2-6x+10\right)\)
\(Q=-\left(x^2-2.x.3+3^2-3^2+10\right)\)
\(Q=-\left(x-3\right)^2-1\)
vì \(-\left(x-3\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1;\forall x\)
\(\Rightarrow Q\le-1\)
Vậy MaxQ = -1 đạt được khi x - 3 = 0 => x = 3