Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)
A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)
A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )
A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))
Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0
<=> x = 2007
Vậy x = 2007 thì Amin
bài này từng có trên violimpic đấy bạn