Đa thức đã cho là bậc 3 theo biến x khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
\(\Rightarrow m=5\)
Đa thức đã cho là bậc 3 theo biến x khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)
\(\Rightarrow m=5\)
Tìm giá trị của m để đa thức sau là đa thức bậc 3 theo biến x:
\(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)
Tìm giá trị của m để đa thức sau là đa thức bậc 3 theo biến x
f(x)=(m2 - 25)x4+(20+4m)x3+7x2-9
Tìm giá trị của m để đa thức sau là đa thức bậc 3 theo biến x:
f(x) =(m2-25)x4 + (20+4m)x3 + 7x2 - 9
giúp mk với
a) thu gọn đa thức p(x) = 2 x3 - 9x2 + 5 - 2x2- 4x3+7x và sắp xếp theo luỹ thừa giảm dần của biến tìm bậc tìm hệ số tự do
b) cho đa thức p(x) = x4-x3-x-2 tính p (-1)
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ
số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm
Chứng mình đa thức B(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3 luôn nhận giá trị dương với mọi giá trị của biến x
Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
Tìm giá trị của a để đa thức F(x) = 2x3 - 7x2 + 12x + a chia hết cho đa thức G(x)= x +2
A(x)= x-2x2+3x5+x4+x+x2
B(x)= -2x2+x-2-x4+3x2-3x5
a.Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b.Tìn đa thức M(x) = A(x) + B(x)
c.Tính giá trị của đa thức M(x) khi x= -2
d.x=3 có phải là nghiệm của đa thức M(x) không? Vì sao