A = \(x^2+9y^2+25+6xy-30y-10x-6xy+26\)
= \(x^2-10x+25+9y^2-30y+25+1\)
= \(\left(x-5\right)^2+\left(3y-5\right)^2+1\)
Có : \(\left(x-5\right)^2\ge0\forall x;\left(3y-5\right)^2\ge0\forall y\)
\(\Rightarrow A\ge1\)
Vậy GTNN của A là 1 \(\Leftrightarrow\hept{\begin{cases}x-5=0\\3y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}}\)