Trong mặt phẳng tọa độ Oxy , cho A(1 ; 3), B(5 ; 1). Tìm tọa độ điểm I thỏa mãn: \(\overrightarrow{IO}+\)\(\overrightarrow{IA}\)-\(\overrightarrow{3IB}\) = \(\overrightarrow{0}\)
A. I( 8; 0) B. I( 14; 0) C. I( 6; 14) D. I( 14; 4)
Cho AB = a > 0 với I là trung điểm AB. Tìm tập hợp các điểm M thỏa mãn điều kiện MA2 + MB2 = a2
Trên trục O ; i → cho 3 điểm A; B; C có tọa độ lần lượt là a; b;c . Tìm điểm I sao cho I A → + I B → + I C → = 0 →
A.
B.
C.
D.
Cho A = {a,e,i,o} và E = {a,b,c,d,i,e,o,f}. Xác định CAE
Cho E = {x ∈ N|x ≤ 8}, A = {1,3,5,7}, B = {1,2,3,6} Tìm CAE,CBE,CAE hợp CBE
Cho $\triangle A B C$ với $I, J, K$ lần lượt được xác định bời $\overrightarrow{I B}=2 \overrightarrow{I C} ; \overrightarrow{J C}=-\dfrac{1}{2} \overrightarrow{J A} ; \overrightarrow{K A}=-\overrightarrow{K B}$.
a) Tính $\overrightarrow{I J} ; \overrightarrow{I K}$ theo $\overrightarrow{A B} ; \overrightarrow{A C}$.
b) Chứng minh ba điểm $I, J, K$ thẳng hàng.
Cho tam giác $A B C$. Hai điểm $I, J$ được xác định bởi $\overrightarrow{I A}+3 \overrightarrow{I C}=\overrightarrow{0} ; \overrightarrow{J A}+2 \overrightarrow{J B}+3 \overrightarrow{J C}=\overrightarrow{0}$. Chứng minh ba điểm $I, J, B$ thẳng hàng.
Bài 1:Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả tập X sao cho: B\(\cup\)X=A
Bài 2:A={a,e,i,o}, E={a,b,c,d,i,e,o,f}. Tìm CEA.
Bài 3:Cho: E={x\(\in\)N|x≤8}, A={1,3,5,7}, B={1,2,3,6}. Tìm CEA, CEB, CEA\(\cap\)CEB
Trong mặt phẳng toạ độ oxy cho A(-1;-2)B(3;2)C(4;1) A gpij I là trung điểm của AB tìm toạ độ của I B gọi G là trọng tâm của tam giác ABC tìm toạ độ trọng tâm
Tọa độ định của parabol y = ( - x 2 / 2 ) + 6 x + 1 là
A. I(6; 19) B. I(6; 17)
C. I(-6; -43) D. I(-6; 41)
Trong mặt phẳng tọa độ Oxy cho 2 điểm A(1;0)Và I(0;-2).tìm tọa độ điểm B sao cho I là trung điểm của đoạn Ab