Bài 1:Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả tập X sao cho: B\(\cup\)X=A
Bài 2:A={a,e,i,o}, E={a,b,c,d,i,e,o,f}. Tìm CEA.
Bài 3:Cho: E={x\(\in\)N|x≤8}, A={1,3,5,7}, B={1,2,3,6}. Tìm CEA, CEB, CEA\(\cap\)CEB
Cho lục giác đều $A B C D E F$ tâm $O$. Chứng minh: $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}=\overrightarrow{0}$.
a)A={nϵN/n(n+1)≤15}
b)B={3k-1/kϵZ,-5≤k≤3}
c)C={xϵZ//x/<10}
d)D={xϵQ/x2-3x+1=0}
e)E={xϵZ/2x3-5x2+2x=0}
f)F={xϵN/x<20 và x chia hết cho 3}
Cho đường tròn (O) đường kính AB, lấy điểm D thuộc (O) (D khác A,B), lấy điểm C thuộc OB, kẻ CH vuông góc AD. Tia phân giác góc DAB cắt CH tại F, cắt DB tại I và (O) tại E. Đường thẳng DF cắt (O) tại N
a) Chứng minh ED^2=EI.EA
b) Chứng minh AFCN là tứ giác nội tiếp ( Lưu ý N,C,E chưa thẳng hàng )
[1] Cho tập hợp E = { x ∈ R | x < -3 }.
Khẳng định nào trong các khẳng định dưới đây là đúng?
A. E = ( -3; \(+\infty\) ) B. E = [ -3; \(+\infty\) ) C. E = ( -\(\infty\); -3 ) D. E = (\(-\infty\); -3 ]
Cho tập E = {a,b,c,d} ; F = {b,c,e,g} ; G = {c,d,e,f}
Chứng minh rằng
E giao(F hợp G) = (E giao F) hợp (E giao G)
có bao nhiêu tập hợp x thỏa mãn đk {c;d;e} là con của x và x là con của {a;b;c;d;e;f}
Có bao nhiêu tập hợp X thỏa mãn điều kiện { c ; d ; e } ⊂ X ⊂ { a ; b ; c ; d ; e ; f } ?
A. 11
B. 10
C. 9
D. 8