Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
Điều kiện của tham số m để phương trình m - 1 x + 6 + x + 2 = 0 có nghiệm là
A. m = 4
B. m ≠ 4
C. m = -2
D. m ≠ - 2
Cho bất phương trình: m x 2 + 2 ( m - 1 ) x + m + 2 < 0 . Điều kiện của tham số m để bất phương trình đã cho vô nghiệm là
A. m > 0
B. m ≤ 0
C. m ≥ 1 4
D. m ≤ 1 4
Tìm tập xác định của hàm số:
\(\frac{\sqrt{x-1}}{|2\text{x}-1|-|x-1|}\)
Cho hàm số y = f x = x + 3 m - 2 y. Tất cả các giá trị của tham số m sao cho f x ≥ 0 , ∀ x ∈ [ 1 ; + ∞ ) là
A. m ≤ 1 3
B. m ≤ 2 3
C. m ≥ 1 3
D. 0 < m ≤ 2 3
Cho bất phương trình : 1 - x ( m x - 2 ) < 0 ( * ) Xét các mệnh đề sau:
(1) Bất phương trình tương đương với mx - 2 <0
(2) m ≥ 0 là điều kiện cần để mọi x< 1 là nghiệm của bất phương trình (*)
(3) Với m < 0 , tập nghiệm của bất phương trình là 2/m< x< 1
Mệnh đề nào đúng?
A. Chỉ (1)
B. Chỉ (3)
C. (2) và (3)
D. Tất cả đúng
Cho hàm số y = f x = m 2 - 1 x + 2 m - 3 .
Tất cả các giá trị của tham số m để hàm số đồng biến trên ℝ là
A. m > 3 2
B. -1 < m < 1
C. [ m < - 1 m > 1
D. m ≠ ± 1
Cho bất phương trình : 1 - x ( mx - 2 ) < 0 ( * )
Xét các mệnh đề sau:
(I) Bất phương trình tương đương với mx - 2 < 0;
(II) m ≥ 0 là điều kiện cần để mọi x < 1 là nghiệm của bất phương trình (*)
(III) Với m < 0 , tập nghiệm của bất phương trình là 2 m < x < 1
Mệnh đề nào đúng?
A. Chỉ (I)
B. Chỉ (III)
C. (II) và (III)
D. Cả (I), (II), (III)
Tập xác định của hàm số y = 2 x - 3 + 4 x - 3 là:
A. D = 3 2 ; 4 3
B. D = 2 3 ; 3 4
C. D = 4 3 ; 2 3
D. D = [ 3 2 ; + ∞ )
Tất cả các giá trị của tham số m để hệ phương trình x - y = m x 2 - x y - m - 2 = 0 có nghiệm là
A. m = 0
B. m ≠ 0
C. m = 2
D. m ≠ 2