Bạn tham khảo bài này, có dạng tương tự.
http://olm.vn/hoi-dap/question/776690.html
Ta có
\(x^4+x^3+x^2+x+1=y^2\)
\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương
Ta thấy rằng
\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
Và
\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)
\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)
\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)