Ta giải như sau :
Ta có \(S\left(n\right)+n=2015\)(1)
\(\Rightarrow n< 2015\)(2)
Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)
\(\Rightarrow n\ge2015-28=1987\)(3)
Từ (2) và (3) ta có : \(1987\le n< 2015\)
Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.