tự nhận mk là lớp 1 thì chả là em kakakakakka
tự nhận mk là lớp 1 thì chả là em kakakakakka
Cho x,y,z là các số thực dương thỏa mãn x+2y+3z=2
Tìm gía trị nhỏ nhất của S=\(\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Giups em hiểu vs ạ
Cho ba số thực dương \(x,y,z\) thỏa mãn: \(x+2y+3z=2\).
Tìm giá trị lớn nhất của biểu thức: \(S=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
Cho x,y,z là các số thực dương và thỏa mãn điều kiện x+y+z=xyz. Tìm giá thị lớn nhất của:
\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1 +z^2}}\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Cho x,y,z là các số dương thỏa mãn x + 2y + 3z = 3
Tìm giá trị lớn nhất của \(Q=\frac{88y^3-x^3}{2xy+16y^2}+\frac{297z^3-8y^3}{6yz+36z^2}+\frac{11x^3-27z^3}{3xz+4x^2}\)
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
TÌM SỐ THỰC X,Y THỎA MÃN ĐIỀU KIỆN TRÊN
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
Cho x,y,z là các số thực dương thỏa mãn\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) 1. CMR \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}+\sqrt{\frac{zx}{z+x+2y}}}\le\frac{1}{2}\)