=>x+1,5=0 và 2,7-y=0
=>x=-1,5(loại) và y=2,7(loại)
Vậy: Không có cặp số nguyên x,y nào thỏa mãn
=>x+1,5=0 và 2,7-y=0
=>x=-1,5(loại) và y=2,7(loại)
Vậy: Không có cặp số nguyên x,y nào thỏa mãn
Tìm các số nguyên x,y biết
\(\left(x+1,5\right)^8\)+\(\left(2,7-y\right)^{10}\)=0
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
tìm số nguyên dương x,y thỏa mãn \(\left(x^2+y^2\right)\left(x+y-8\right)=8\left(xy+1\right)\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
GIúp mình bài này plzzzz:
Tìm các số nguyên dương x,y thỏa mãn:
\(\left(x^2y+x+y\right)⋮\left(xy^2+y+8\right)\)
tìm các số nguyên dương x,y thỏa mãn \(\left(x+y\right)^2\)- 4x-5y-7=0
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
tìm tất cả các số nguyên x, y thỏa mãn
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
Cho các số thực x y z thỏa mãn x+y+z=0 \(x^2+y^2+z^2=8\) TÌm giá trị nhỏ nhất của biểu thức S=\(\left|x\right|+\left|y\right|+\left|z\right|\)