Đặt (5n + 7, 3n + 2) = d. Ta có:
\(\hept{\begin{cases}5n+7⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(5n+7\right)-5\left(3n+2\right)⋮d\Rightarrow\left(15n+21\right)-\left(15n+10\right)⋮d\Rightarrow11⋮d\)\(\Rightarrow d\inƯ\left(11\right)=\left\{1;11\right\}\)
Để hai số đố nguyên tố cùng nhau thì d = 1. Khi đó một trong hai số đó không chia hết cho 11. Ta có:
\(5n+7⋮̸11\Rightarrow5n+7-22⋮̸11\Rightarrow5n-15⋮̸11\Rightarrow5\left(n-3\right)⋮̸11\)
\(3n+2⋮̸11\Rightarrow3n+2-11⋮̸11\Rightarrow3n-9⋮̸11\Rightarrow3\left(n-2\right)⋮̸11\Rightarrow n-2⋮̸11\)
Vậy, để thỏa mãn đề bài thì n không chia 3 dư 11 hoặc chia 2 dư 11