Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
syl tráo nọy lguơì

TÌm các số nguyên dương x;y;z với  x < y < z thỏa mãn

1/x + 1/y + 1/z = k

Incursion_03
15 tháng 2 2019 lúc 18:25

Vì \(x;y;z\inℕ^∗\) và \(x< y< z\)nên \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)

\(\Rightarrow0< \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}< 2\)

\(\Rightarrow0< k< 2\)

Mà k nguyên dương nên k = 1

Với k = 1 thì pt : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) 

*Với x = 1 thì VT > VP với mọi y ; z nguyên dương

*Với x > 3 thì y > 4 và z > 5

\(\Rightarrow VT\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 1\)

=> pt vô nghiệm

Do đó x = 2 

\(\Rightarrow\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)

\(\Leftrightarrow\frac{y+z}{yz}=\frac{1}{2}\)

\(\Leftrightarrow2y+2z=yz\)

\(\Leftrightarrow\left(2y-yz\right)+\left(2z-4\right)=-4\)

\(\Leftrightarrow y\left(2-z\right)+2\left(z-2\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(2-z\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(z-2\right)=4\)

Từ pt  \(\Rightarrow y\ne2\)

            => y > 2

Vì \(\hept{\begin{cases}y>2\\z\ge3\end{cases}\Rightarrow}\hept{\begin{cases}y-2>0\\z-2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\left(h\right)\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\left(h\right)\hept{\begin{cases}y-2=4\\z-2=1\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}\)(Do y < z )

Vậy \(\hept{\begin{cases}x=2\\y=3\\z=6\end{cases}}\)


Các câu hỏi tương tự
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Tạ Uyên
Xem chi tiết
ducquang050607
Xem chi tiết
Song tử
Xem chi tiết
Vo Trong Duy
Xem chi tiết
Hoàng Quang Kỳ
Xem chi tiết
Edogawa Conan
Xem chi tiết
Phạm Anh Tuấn
Xem chi tiết
king
Xem chi tiết