Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Chứng minh \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le4\) với mọi a;b;c là số nguyên dương
với a,b là các số thực dương cmr \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}>=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
chứng minh bất đẳng thức sau
\(\dfrac{a}{bc}\)+\(\dfrac{b}{ca}\)+\(\dfrac{c}{ab}\)≥\(\dfrac{2}{a}\)+\(\dfrac{2}{b}\)+\(\dfrac{2}{c}\)( với a,b,c là các số dương)
Với a,b,c là các số dương. Chứng minh (a+b+c)(\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\))≥9
với a,b,c là các số thực dương thỏa mãn a2=2(b2+c2), tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
{giải giúp mình với mai tớ kiểm tra rồi}
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tính giá trị biểu thức
P=\(\dfrac{a-b}{3c+ab}\)+\(\dfrac{b-c}{3a+bc}\)+\(\dfrac{c-a}{3b+ca}\)
a,b,c là các số thực dương thỏa mãn a+b+c=1. CMR: \(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}< =9\)
Với a, b, c là những số thực dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\)\(\left(c+a\right)\)=1
Chứng minh rằng \(\dfrac{a}{b\left(b+2c\right)^2}\)+\(\dfrac{b}{c\left(c+2a\right)^2}\)+\(\dfrac{c}{a\left(a+2b\right)^2}\)≥\(\dfrac{4}{3}\)