1, tìm Amin
A=\(\frac{x^4+y^4+z^4+t^4}{x^2+y^2+z^2+t^2}\)
x+y+z+t=2
x,y,z,t >0
1.Chứng minh \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2}{x-y+z-t}-2zt+2xz-t^2\)
2.Rút gọn X= \(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
1) CM:
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2-2zt+2xz-t^2}{x-y+z-t}\)
2) Rut gon
\(\frac{\left(2^{4+4}\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
tìm x,y,z,t
| x-y| + | y-z| + |z -t| + | t -x | =2017
tìm x 2 ( x+1) +4^2 =2^4
giúp mink làm chi tiết ná
a)Tìm x,y,z biết :
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=6\\x^3+y^3+z^3=6\end{matrix}\right.\)
b)Tìm các số nguyên x,y t/m:
2x2+\(\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích x.y có GTLN
c)Cho a+b+c=0 và a2+b2+c2=14. Tính GT của bt M=a4+b4+c4
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t
cho x,y,z>0 thỏa mãn:\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
tìm Min:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
bài 4 ; tìm x
h, D =x mũ 2 + 2xy + y mũ 2 - z mũ 2 - 2zt - t mũ 2 tại x = 89; y= 11, z= 60, t= 30