1)Tìm 2 số m,n sao cho
2m-1 chia hết cho n
2n-1 chia hết cho m
2)cho 3 số a;b;c biết a.b.c=1
cm\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}< =\left(\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\right).\frac{1}{4}\)
3)Tìm x,y nguyên :
x2+2y2+3xy-2x-4y-5=0
Cho a,b,c là các số thực dương sao cho a.b.c=1. Tìm giá trị nhỏ nhất của
A=\(\frac{a^2+1}{ab+a+1}+\frac{b^2+1}{bc+b+1}+\frac{c^2+1}{ca+c+1}\)
Cho a.b.c =1 và a+b+c>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . CM (a-1).(b-1).(c-1)>0
a) cho x,y,z>0 sao cho xyz=1. CMR \(\frac{x^4y}{x^2+1}+\frac{y^4z}{^{y^2+1}}+\frac{z^4x}{^{z^2+1}}\ge\frac{3}{2}\)
b) cho a,b,c,d>0 sao cho a+b+c+d=4. CMR \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2d}\ge2\)
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1
Bài 1: Cho 3y - x = 6. Tính giá trị biểu thức:
A=\(\frac{x}{y-2}+\frac{2x-3y}{x-6}\)
Bài 2: Tìm x,y,z. Biết \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^{^2}+y^2+z^2}{5}\)
Bài 3: Cho biết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chứng minh: a + b + c = a nhân b nhân c
Bài 4: Xác định các số a,b,c sao cho:
a) \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
b)\(\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}\)
c)\(\frac{1}{\left(x+1\right)^2.\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)
Cho a.b.c=0 và a+b+c=0. Chứng minh: $\frac{1}{b^2+c^2-a^2} + \frac{1}{c^2+a^2-b^2} + \frac{1}{a^2+b^2-c^2} = 0
cho a,b,c>0 , chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\) Áp dụng chứng minh các BĐT sau:
a,\(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b,cho \(x,y,z>0\) thỏa mãn x+y+z=1.Tìm GTLN của biểu thức\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
c,cho a,b,c>0 thỏa mãn\(a+b+c\le1\) Tìm GTNN của biểu thức\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
d,cho a,b,c >0 thỏa mãn a+b+c=1.Chứng minh\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge30\)
cho cc số a;b; thỏa mãn a+b+c khac 0 va\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) khi đó giá trị của M=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\)?