\(ab+3a-2b=-5\)
\(a.\left(b+3\right)-2b-6=-5-6=-11\)
\(a.\left(b+3\right)-2.\left(b+3\right)=-11\)
\(\left(a-2\right)\left(b+3\right)=-11\)
\(\Rightarrow a-2;b+3\inƯ\left(-11\right)=\left\{-11;-1;1;11\right\}\)
| a-2 | a | b+3 | b |
| -11 | -9 | 1 | -2 |
| -1 | 1 | 11 | 8 |
| 1 | 3 | -11 | -14 |
| 11 | 13 | -1 | -4 |
Vậy (a;b)\(\in\){(-9;-2);(1;8);(3;-14);(13;-4)}
