Bài 12: Chia đa thức một biến đã sắp xếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đổng Ngạc Lương Tịch

Tìm a, b để đa thức \(2x^4-3x^3+ax^2-x+b\) chia hết cho \(x^2+3x-4\)

Trần Quốc Lộc
16 tháng 11 2017 lúc 10:06

Do đa thức bị chia \(2x^4-3x^3\: +ax^2-x+b\) có bậc 4

đa thức chia \(x^2+3x-4\) có bậc 2

nên đa thức thương là tam thức bậc 2

\(\Rightarrow\) Nhân tử đầu \(2x^4:x^2=2x^2\)

Gọi đa thức thương là \(2x^2+cx+d\)

\(\Rightarrow\) Để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)

\(\text{thì }\Rightarrow2x^4-3x^3\: +ax^2-x+b=\left(x^2+3x-4\right)\left(2x^2+cx+d\right)\\ \\ =2x^4+cx^3+dx^2+6x^3+3cx^2+3dx-8x^2-4cx-4d\\ \\=2x^4+\left(c+6\right)x^3+\left(d+3c-8\right)x^2+\left(3d-4c\right)x-4d\)

\(\Rightarrow\left\{{}\begin{matrix}c+6=-3\Rightarrow c=-9\\d+3c-8=a\\3d-4c=-1\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d-35=a\\3d=-37\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{142}{3}\\d=-\dfrac{37}{3}\\b=\dfrac{148}{3}\end{matrix}\right.\)

Vậy để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)

thì \(a=-\dfrac{142}{3};b=\dfrac{148}{3}\)


Các câu hỏi tương tự
Võ Lan Nhi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Hạ Thường An
Xem chi tiết
Vũ An
Xem chi tiết
Minh Anh Đỗ
Xem chi tiết
Nancy Drew
Xem chi tiết