Do đa thức bị chia \(2x^4-3x^3\: +ax^2-x+b\) có bậc 4
đa thức chia \(x^2+3x-4\) có bậc 2
nên đa thức thương là tam thức bậc 2
\(\Rightarrow\) Nhân tử đầu \(2x^4:x^2=2x^2\)
Gọi đa thức thương là \(2x^2+cx+d\)
\(\Rightarrow\) Để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)
\(\text{thì }\Rightarrow2x^4-3x^3\: +ax^2-x+b=\left(x^2+3x-4\right)\left(2x^2+cx+d\right)\\ \\ =2x^4+cx^3+dx^2+6x^3+3cx^2+3dx-8x^2-4cx-4d\\ \\=2x^4+\left(c+6\right)x^3+\left(d+3c-8\right)x^2+\left(3d-4c\right)x-4d\)
\(\Rightarrow\left\{{}\begin{matrix}c+6=-3\Rightarrow c=-9\\d+3c-8=a\\3d-4c=-1\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d-35=a\\3d=-37\\-4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{142}{3}\\d=-\dfrac{37}{3}\\b=\dfrac{148}{3}\end{matrix}\right.\)
Vậy để \(2x^4-3x^3\: +ax^2-x+b⋮x^2+3x-4\)
thì \(a=-\dfrac{142}{3};b=\dfrac{148}{3}\)